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Abstract- The MRTD scheme is applied to the anal-

ysis of waveguide problems. Speci�cally, the �eld

pattern and the S-parameters of a dielectric-loaded

parallel-plate waveguide are calculated. The use of

wavelets enables the implementation of a space- and

time-adaptive gridding technique. The results are

compared to those obtained by use of the conven-

tional FDTD scheme to indicate considerable savings

in memory and computational time.

I Introduction

Recently a new technique has been successfully ap-

plied [1-4] to a variety of microwave problems and

has demonstrated unparalleled properties. This tech-

nique is derived by the use of multiresolution analysis

for the discretization of the time-domain Maxwell's

equations. The multiresolution time domain tech-

nique (MRTD) based on Battle Lemarie functions

has been applied to linear as well as nonlinear propa-

gation problems. The PML absorbing boundary con-

dition has been generalized in order to analyze open

planar structures. MRTD has demonstrated savings

in time and memory of two orders of magnitude. In

addition, the most important advantage of this new

technique is its capability to provide space and time

adaptive gridding without the problems that the con-

ventional FDTD is encountering. This is due to the

use of two separate sets of basis functions, the scal-

ing and wavelets and the capability to threshold the

�eld coe�cients due to the excellent conditioning of

the formulated mathematical problem.

In this paper, a space/time adaptive gridding algo-

rithm based on the MRTD scheme is proposed and

applied to the waveguide problems. As an exam-

ple, the propagation of a Gabor pulse in a partially-

�lled parallel-plate waveguide is simulated and the

S-parameters are evaluated. Wavelets are placed only

at locations where the EM �elds have signi�cant val-

ues, creating a space- and time- adaptive dense mesh

in regions of strong �eld variations, while maintain-

ing a much coarser mesh elsewhere.

II The 2D-MRTD scheme

For simplicity the 2D-MRTD scheme for the TMz

modes will be used herein. To derive the 2D-MRTD

scheme, the �eld components are represented by a

series of cubic spline Battle-Lemarie [5] scaling and

wavelet functions to the longitudinal direction in

space and pulse functions in time. After inserting

the �eld expansions in Maxwell's equations, we sam-

ple them using pulse functions in time and scal-

ing/wavelet functions in space domain.

As an example, sampling @Dx=@t;= � @Hy=@z in

space and time, the following di�erence equation is

obtained
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where ~ Dl, m and ~H~~ with ~=~ (scaling),@

(wavelets) are the coefficients for the electric and

magnetic field expansions. The indices 1, m and k

are the discrete space and time indices, which are

related to the space and time coordinates via z =

lAx,.z = mAz and t = kAt, where Ax,Az are the

space discretization intervals in x- and z-direction

and At is the time discretization interval. The coeffi-

cients a(i), b(i), c(i) are derived and given in [2]. For

an accuracy of O. l% the values ml = m5 = 8,m2 =

m3 = mb = m6 = 9 have been used.

For open structures, the perfectly matched layer

(PML) technique can be applied by assuming that

the conductivity is given in terms of scaling and

wavelet functions instead of pulse functions with re-

spect to space [4]. The spatial distribution of the con-

ductivity for the absorbing layers is modelled by as-

suming that the amplitudes of the scaling functions

have a parabolic distribution. The MRTD mesh is

terminated by a perfect electric conductor (PEG) at

the end of the PML region. Usually, 8-16 cells of PML

medium with a~az =0 .4 S/m provide reflection coef-

ficients smaller than -90 dB.

In order to use a pulse excitation at z = mA.z with

respect to space and to obtain an excitation identical

to an FDTD excitation, we decompose the pulse in

terms of scaling a~~l~avelet functions

~ Em x EF(O, kAt)

, m+ml Cv(i) = C4(1 — i). EF(O, kAt) is the time dependence

of the excitation. For Ii I < 4, the above excitation

components are superimposed to the field values ob-

tained by the MRTD algorithm. For example, the

total Ef,n+i will be given by

@ ~+i = EFI(O, kAf) c~(~) + %f’,rn+i
total

Due to the nature of the Battle-Lemarie expan-

sion functions, the total field is a summation of

the contributions from the non-localized scaling and

wavelet functions. For example, the total electric field

-E~(z~,z~,t~) with (k – 1/2) At < t.< (k+ 1/2) At

is calculated in the same way with [2, 3] by

l’,m’=–1~

12,,

where #m(z) = #(&–m) and @i,~(z) = dIi(& –m)

represent the Battle-Lemarie scaling and i-resolution

wavelet function respectively. For an accuracy of

0.1% the values 11 = iz,{ = 4 have been used.

There are many different ways to take advantage of

the capability of the MRTD technique to provide

space and time adaptive gridding. In DSP, thresh-

olding of the wavelet coefficients over a specific time-

and space- window (5- 10 points) contribute signifi-

cant memory economy, but increase the implemen-

tation complexity and the execution time. The sim-

plest way is to threshold the wavelet components to

a fraction (usually ~ O. lYo) of the scaling function

at the same cell for each time-step. All components

below this threshold are eliminated from the subse-

quent calculations. This is the simplest threshold-

ing algorithm. It doesn’t add any significant over-

head in execution time, but it offers only a moderate

(pessimistic) economy in memory (factor close to 2).

Also, this algorithm allows for the dynamic memory

allocation in its programming implementation.

~=—4 ~=—4

where the coefficients c~ (i), C@(i) are given in Table

1 for i > 0. For i < 0 it is C@(–i) = c+(i) and

III Applications of 2D-MRTD

The 2D-MRTD scheme is applied to the analysis

of the partially-loaded parallel-plate waveguide of

(Fig. 1) for the frequency range O-30GHZ. For the

‘).
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analysis based on Yee's FDTD scheme, a 16 � 800

mesh is used resulting in a total number of 14400

grid points. When the structure is analyzed with the

2D-MRTD scheme, a mesh 2� 100 (200 grid points)

is chosen (dx = 0:24�o, dz = 0:4�o for f = 30GHz).

This size is based on the number of the scaling func-

tions, since the wavelets are used only when and

where necessary. The time discretization interval is

selected to be identical for both schemes and equal

to the 1/10 of the 2D-MRTD maximum�t. For the

analysis we use 8,000 time-steps. The waveguide is

excited with a Gabor function 0-30GHz along a ver-

tical line for the FDTD simulation and for a rectan-

gular region for the MRTD simulations. In all cases,

the front and back open planes are terminated with

a PML region of 16 cells and �Emax=0.4S/m. The lon-

gitudinal distance between the excitation and the di-

electric interface is chosen such that no re
ections

would appear before the Gabor function is complete.

The capability of the MRTD technique to pro-

vide space and time adaptive gridding is veri�ed by

thresholding the wavelet components to the 0:1% of

the value of the scaling function at the same cell for

each time-step. It has been observed that the accu-

racy by using only a small number of wavelets is equal

to what would be achieved if wavelets were used ev-

erywhere. Though this number is varying in time,

its maximum value is 22 out of a total of 100 to

the z-direction (economy in memory by a factor of

28-30). In addition, execution time is reduced by a

factor 4-5. For larger thresholds, the ringing e�ect

due to the elimination of the wavelets deteriorates

the performance of the algorithm. For example, us-

ing a threshold of 1% (6 out of a 100 wavelets to the

z-direction) increases the error by a factor of 2.5.

The normal electric �eld is probed at a distance 10

cells away from the source and is plotted in (Fig.2) in

time-domain. Comparable accuracy can be observed

for the FDTD and the MRTD meshes. In addition,

the re
ection coe�cient S11 is calculated by separat-

ing the incident and the re
ected part of the probed

�eld and taking the Fourier transform of their ra-

tio (Fig.3). The results for 5 GHz (TEM propaga-

tion) are validated by comparison to the theoreti-

cal value obtained applying ideal transmission line

theory [6] and are plotted at Table 2. The time-

and space-adaptive character of the gridding is ex-

ploited in (Figs.4,5) which show that the wavelets

follow the propagating pulses before and after the

incidence to the dielectric interfaces and have negli-

gible values elsewhere. The location and the number

of the wavelet coe�cients with signi�cant values are

di�erent for each time-step, something that creates a

dense mesh in regions of strong �eld variations, while

maintaining a much coarser mesh for the other cells.

IV Conclusion

A space- and time- adaptive gridding algorithm

based on a multiresolution time-domain scheme in

two dimensions has been proposed and has been ap-

plied to the numerical analysis of a waveguide prob-

lem. The �eld pattern and the re
ection coe�cient

have been calculated and veri�ed by comparison to

reference data. In comparison to Yee's conventional

FDTD scheme, the proposed scheme o�ers memory

savings by a factor of 5-6 per dimension maintain-

ing a similar accuracy. The above algorithm can be

e�ectively extended to three-dimension problems.
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Table 1: Excitation Decomposition Coe�s

i 0 1 2 3 4

c�(i) 0.915 0.038 0.010 {0.009 0.005

c (i) {0.103 {0.103 0.121 {0.030 0.015

Table 2: S11 calculated by 2D-MRTD

S11 (
) Relative error

Analyt. Value [6] 0.4298 0.0%

16x800 FDTD 0.4283 -0.3%

2x100 MRTD 0.4360 +1.4%

Figure 1: Dielectric-loaded Waveguide.
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Figure 2: Normal E-�eld (Time-Domain).
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Figure 3: S11 values (Frequency-Domain).
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Figure 4: Adaptive Grid Demonstration.
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