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Abstract- The MRTD scheme is applied to the anal-
ysis of waveguide problems. Specifically, the field
pattern and the S-parameters of a dielectric-loaded
parallel-plate waveguide are calculated. The use of
wavelets enables the implementation of a space- and
time-adaptive gridding technique. The results are
compared to those obtained by use of the conven-
tional FD'TD scheme to indicate considerable savings

in memory and computational time.

I Introduction

Recently a new technique has been successfully ap-
plied [1-4] to a variety of microwave problems and
has demonstrated unparalleled properties. This tech-
nique is derived by the use of multiresolution analysis
for the discretization of the time-domain Maxwell’s
equations. The multiresolution time domain tech-
nique (MRTD) based on Battle Lemarie functions
has been applied to linear as well as nonlinear propa-
gation problems. The PML absorbing boundary con-
dition has been generalized in order to analyze open
planar structures. MRTD has demonstrated savings
in time and memory of two orders of magnitude. In
addition, the most important advantage of this new
technique is its capability to provide space and time
adaptive gridding without the problems that the con-
ventional FDTD is encountering. This is due to the

use of two separate sets of basis functions, the scal-
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ing and wavelets and the capability to threshold the
field coefficients due to the excellent conditioning of

the formulated mathematical problem.

In this paper, a space/time adaptive gridding algo-
rithm based on the MRTD scheme is proposed and
applied to the waveguide problems. As an exam-
ple, the propagation of a Gabor pulse in a partially-
filled parallel-plate waveguide is simulated and the
S-parameters are evaluated. Wavelets are placed only
at locations where the EM fields have significant val-
ues, creating a space- and time- adaptive dense mesh
in regions of strong field variations, while maintain-

ing a much coarser mesh elsewhere.

IT The 2D-MRTD scheme

For simplicity the 2D-MRTD scheme for the TM,
modes will be used herein. To derive the 2D-MRTD
scheme, the field components are represented by a
series of cubic spline Battle-Lemarie [5] scaling and
wavelet functions to the longitudinal direction in
space and pulse functions in time. After inserting
the field expansions in Maxwell’s equations, we sam-
ple them using pulse functions in time and scal-

ing/wavelet functions in space domain.

As an example, sampling 0D, /0t,= — 0H,/0z in
space and time, the following difference equation is

obtained
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where Df7  and (H{Y with £=¢ (scaling)y
(wavelets) are the coefficients for the electric and
magnetic field expansions. The indices I;m and k
are the discrete space and time indices, which are
related to the space and time coordinates via z =
{Az,z = mAz and t = kAt, where Axz,Az are the
space discretization intervals in x- and z-direction
and At is the time discretization interval. The coeffi-
cients a(?), b(%), ¢(¢) are derived and given in [2]. For
an accuracy of 0.1% the values m; = ms = 8,my =

ma = my = mg = 9 have been used.

For open structures, the perfectly matched layer
(PML) technique can be applied by assuming that
the conductivity is given in terms of scaling and
wavelet functions instead of pulse functions with re-
spect to space [4]. The spatial distribution of the con-
ductivity for the absorbing layers is modelled by as-
suming that the amplitudes of the scaling functions
have a parabolic distribution. The MRTD mesh is
terminated by a perfect electric conductor (PEC) at
the end of the PML region. Usually, 8-16 cells of PML
medium with ¢Z  =0.4S/m provide reflection coef-
ficients smaller than -90 dB.

In order to use a pulse excitation at z = mAz with
respect to space and to obtain an excitation identical
to an FDTD excitation, we decompose the pulse in
terms of scaling and wavelet functions
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where the coefficients ¢g(7), ¢y (¢) are given in Table
1for i > 0. For i < 0itis cg(—i) = cq(i) and

cy(t) = ey(1—17). Ep(0, kAt) is the time dependence
of the excitation. For |i| < 4, the above excitation
components are superimposed to the field values ob-
tained by the MRTD algorithm. For example, the
total Ef . ,; will be given by

Elf,m+i rotal Er(0, kAt) ¢y (i) + E;cb,m-}-i

Due to the nature of the Battle-Lemarie expan-
sion functions, the total field 1s a summation of
the contributions from the non-localized scaling and
wavelet functions. For example, the total electric field
Eo(zo, 20,t0) with (k—1/2) At <t, < (k+1/2) At

is calculated in the same way with [2, 3] by
Iy
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where ¢ () = ¢(Z —m) and ¥; m(2) = Yi( A —m)
represent the Battle-Lemarie scaling and i-resolution
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wavelet function respectively. For an accuracy of
0.1% the values {; = I3 ; = 4 have been used.

There are many different ways to take advantage of
the capability of the MRTD technique to provide
space and time adaptive gridding. In DSP, thresh-
olding of the wavelet coefficients over a specific time-
and space- window (5-10 points) contribute signifi-
cant memory economy, but increase the implemen-
tation complexity and the execution time. The sim-
plest way is to threshold the wavelet components to
a fraction (usually < 0.1%) of the scaling function
at the same cell for each time-step. All components
below this threshold are eliminated from the subse-
quent calculations. This is the simplest threshold-
ing algorithm. It doesn’t add any significant over-
head in execution time, but it offers only a moderate
(pessimistic) economy in memory (factor close to 2).
Also, this algorithm allows for the dynamic memory

allocation in its programming implementation.

IIT Applications of 2D-MRTD

The 2D-MRTD scheme is applied to the analysis
of the partially-loaded parallel-plate waveguide of
(Fig.1) for the frequency range 0-30GHz. For the
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analysis based on Yee’s FDTD scheme, a 16 x 800
mesh is used resulting in a total number of 14400
grid points. When the structure is analyzed with the
2D-MRTD scheme, a mesh 2 x 100 (200 grid points)
is chosen (dz = 0.24X,, dz = 0.4, for f = 30GHz).
This size is based on the number of the scaling func-
tions, since the wavelets are used only when and
where necessary. The time discretization interval is
selected to be identical for both schemes and equal
to the 1/10 of the 2D-MRTD maximum At. For the
analysis we use 8,000 time-steps. The waveguide is
excited with a Gabor function 0-30GHz along a ver-
tical line for the FDTD simulation and for a rectan-
gular region for the MRTD simulations. In all cases,
the front and back open planes are terminated with
a PML region of 16 cells and o2, =0.4S/m. The lon-
gitudinal distance between the excitation and the di-
electric interface is chosen such that no reflections

would appear before the Gabor function is complete.

The capability of the MRTD technique to pro-
vide space and time adaptive gridding is verified by
thresholding the wavelet components to the 0.1% of
the value of the scaling function at the same cell for
each time-step. It has been observed that the accu-
racy by using only a small number of wavelets 1s equal
to what would be achieved if wavelets were used ev-
erywhere. Though this number is varying in time,
its maximum value is 22 out of a total of 100 to
the z-direction (economy in memory by a factor of
28-30). In addition, execution time is reduced by a
factor 4-5. For larger thresholds, the ringing effect
due to the elimination of the wavelets deteriorates
the performance of the algorithm. For example, us-
ing a threshold of 1% (6 out of a 100 wavelets to the

z-direction) increases the error by a factor of 2.5.

The normal electric field is probed at a distance 10
cells away from the source and is plotted in (Fig.2) in
time-domain. Comparable accuracy can be observed
for the FDTD and the MRTD meshes. In addition,
the reflection coefficient S1; is calculated by separat-
ing the incident and the reflected part of the probed
field and taking the Fourier transform of their ra-
tio (Fig.3). The results for 5 GHz (TEM propaga-

tion) are validated by comparison to the theoreti-

cal value obtained applying ideal transmission line
[6] and are plotted at Table 2. The time-
and space-adaptive character of the gridding is ex-
ploited in (Figs.4,5) which show that the wavelets
follow the propagating pulses before and after the

theory

incidence to the dielectric interfaces and have negli-
gible values elsewhere. The location and the number
of the wavelet coefficients with significant values are
different for each time-step, something that creates a
dense mesh in regions of strong field variations, while

maintaining a much coarser mesh for the other cells.

IV  Conclusion

A space- and time- adaptive gridding algorithm
based on a multiresolution time-domain scheme in
two dimensions has been proposed and has been ap-
plied to the numerical analysis of a waveguide prob-
lem. The field pattern and the reflection coefficient
have been calculated and verified by comparison to
reference data. In comparison to Yee’s conventional
FDTD scheme, the proposed scheme offers memory
savings by a factor of 5-6 per dimension maintain-
ing a similar accuracy. The above algorithm can be

effectively extended to three-dimension problems.
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Table 1: Excitation Decomposition Coeffs

i 0 1 2 3 4
cs(i) | 0915 | 0.038 | 0.010 | -0.009 | 0.005
cp(i) | =0.103 | —0.103 | 0.121 | —0.030 | 0.015

Table 2: S;; calculated by 2D-MRTD

S11 (2) | Relative error
Analyt. Value [6] | 0.4298 0.0%
16x800 FDTD 0.4283 -0.3%
2x100 MRTD 0.4360 +1.4%
er=1 er = 256 48 mm
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Figure 1: Dielectric-loaded Waveguide.
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Figure 2: Normal E-field (Time-Domain).
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Figure 3: S;; values (Frequency-Domain).
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Figure 4: Adaptive Grid Demonstration.
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